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We derive the asymptotic spectrum (as the Ekman number E → 0) of axisymmetric
inertial modes when the problem is restricted to two dimensions. We show that the
damping rate of such modes scales with the square root of the Ekman number and that
the width of the shear layers of the eigenfunctions scales with E1/4. The eigenfunctions
obey a Schrödinger equation with a quadratic potential; we provide the analytical
expression for eigenvalues (frequency and damping rate). These results validate the
picture that attractors act like a potential well, trapping inertial waves which resist
confinement owing to viscosity. Using three-dimensional numerical solutions, we
show that the results can be applied to equatorially trapped modes in a thin spherical
shell; in fact, these two-dimensional solutions give the first step (the zeroth order) of a
perturbative approach to three-dimensional solutions in a spherical shell. Our method
is applicable in a straightforward way to any other container where bi-dimensionality
dominates.

1. Introduction
Recently, Rieutord & Valdettaro (1997) and Rieutord, Georgeot & Valdettaro

(2000, 2001) have shown, through the example of an incompressible fluid contained
in a spherical shell, the fascinating behaviour of the oscillations of rotating fluids,
namely inertial modes, which comes from the ill-posed nature of the associated
inviscid problem.

Pressure perturbations of inviscid incompressible rotating fluids obey to the cele-
brated Poincaré equation, ∆p− (2Ω/ω)2∂2p/∂z2 = 0 where Ω is the angular velocity
of the fluid’s frame, ω the frequency of oscillations and z the coordinate along the
rotation axis. This equation is hyperbolic since ω 6 2Ω (Greenspan 1969). But for
contained fluids pressure perturbations must meet boundary conditions expressing
the impermeability of the boundaries; hence, the problem is mathematically ill-posed.

This property implies that, except for some containers (a full sphere, a cylinder)
where the Poincaré equation is separable, most of the solutions of this problem are
singular. As shown by Rieutord et al. (2001), three types of singularities arise. The first
and strongest is the one associated with the convergence of the characteristics towards
a periodic orbit called an attractor (Maas & Lam 1995; Rieutord & Valdettaro 1997).
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Such singularities make the velocity field neither integrable nor square-integrable;
equivalently, both total momentum and total kinetic energy of the fluid diverge. The
second type of singularity comes about because of the oblique nature of boundary
conditions: the impermeability of boundaries makes the velocity tangential to the
boundaries, a condition which reads

−(ω/2Ω)2n · ∇p+ i(ω/2Ω)(ez × n) · ∇p+ (ez · n)(ez · ∇p) = 0

when using the pressure (Greenspan 1969) (n and ez are unit vectors along the outer
normal and z-axis respectively). A singularity arises when the boundary is parallel to
a characteristic, a situation occurring at the so-called critical latitudes in a spherical
shell (these latitudes λc are such that sin λc = ω/2Ω). These singularities leave the
velocity field integrable but still forbid square-integrability. Finally, in the case of
axisymmetric containers, an additional singularity of solutions focused on attractors
comes into play (see the Appendix of Rieutord & Valdettaro 1997). It occurs on the
symmetry axis but unlike the previous two singularities this one leaves the solutions
integrable and square-integrable.

The non-square integrability associated with the first and second kinds of singularity
forbids the existence of eigenvalues and eigenmodes. However, real fluids are viscous
and do have (damped) eigenmodes. We therefore face the unusual situation where
eigenmodes of a fluid require the viscosity to exist and be computed. As shown in
Rieutord et al. (2001), viscosity regularizes the singularities into thin shear layers
whose width scales with the one-fourth power of viscosity. Hence, it turns out that
attractors which control the dynamics of characteristics also control shear layers
associated with the viscous modes. It was shown in particular that the asymptotic
(for low viscosities) eigenmodes result from a balance between the diffusive action of
viscosity and the focusing exerted by attractors.

However, the question of how viscosity determines the eigenvalues (eigenfrequencies
and damping rates) remained unsolved. Solving this problem is of considerable interest
as it opens up the asymptotic theory to a large class of problems which include
gravity modes and gravito-inertial modes which suffer from the same mathematical
constrains. But the challenge is difficult since one needs to combine the effects of
a mapping which makes the solution singular and the effects of the viscosity which
regularizes and quantizes the solution. To our knowledge such a problem has never
been considered.

In this paper we present a step towards the solution of this problem. As in
Rieutord et al. (2001, hereafter referred to as I), we consider the case of a fluid inside
a rotating spherical shell because of its numerous applications to astrophysical and
geophysical situations. As outlined above, many difficulties need to be overcome and
to make progress simplifications are in order. We found that reducing the problem
to two dimensions offers an interesting step towards the general solution. Such a
simplification is equivalent to considering the inertial modes inside a toroidal shell
in the limit of an infinite major radius, i.e. a slender toroidal shell. It has the merit
of removing the weakest singularities which are not essential to our problem (critical
latitudes and axial symmetry as described above). It thus simplifies the action of the
mapping (the inviscid evolution along characteristics is reduced to the identity) but
the questions of how singularities are regularized and how quantization arises are still
present.

As we shall see, this two-dimensional problem can be solved entirely and offers a
nice physical picture: modes featured by attractors can be viewed as a (inertial) wave
trapped in a potential well, like a quantum particle. We give an analytical formula
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for the frequency (and damping rate) of the modes in the asymptotic limit where the
Ekman number vanishes.

Besides their pedagogical virtue which permits the understanding of the regu-
larization and quantization processes, these two-dimensional solutions also have
applications to the real world as a zeroth order of a perturbative approach to
three-dimensional solutions. As shown by Stewartson (1971, 1972a, b) during the first
attempts to solve this problem, the equatorial region of a thin spherical shell can be
dealt with as a two-dimensional approximation. This is of course of great interest for
the ocean and atmosphere dynamics (Maas 2001). We give an example of a particular
application.

We have organized the paper as follows: in the first part we formulate the two-
dimensional problem and give the associated numerical solutions. The second part
of the paper is devoted to the analysis of the solutions which is divided into two
steps: the boundary layer analysis and the role of the mapping; putting the results
together leads to the quantization of eigenvalues. We then show how these results
can be applied to the thin shell limit. Finally, a discussion of the results concludes the
paper.

2. Numerical solutions
2.1. Equations of motion

In paper I we considered an incompressible viscous fluid with kinematic viscosity ν,
contained in a spherical shell whose outer radius is R and inner radius ηR with η < 1.
The fluid is rotating around the z-axis with the angular velocity Ω. Using (2Ω)−1

as the time scale and R as the length scale, small-amplitude perturbations obey the
linear equation

∂u

∂t
+ ez × u = −∇p+ E∆u,

∇ · u = 0,

 (2.1)

where u is the velocity field of the perturbations and p is the reduced pressure
perturbation.

Imposing an axisymmetric motion and using cylindrical coordinates (r, ϕ, z), we
can write the velocity components as

ur = −1

r

∂χ

∂z
, uϕ = u(r, z), uz =

1

r

∂χ

∂r
,

where χ is the meridional stream function. We note that u = ∇×χeφ/r+u(r, z)eφ. The
equation of momentum and its curl yield the following equations for ψ = χ/r and u:

λ∆ψ + ∂zu = E∆∆ψ,

λu− ∂zψ = E∆u.

}
(2.2)

In order to obtain a strictly two-dimensional problem, we neglect all curvature
terms like 1/r∂/∂r, 1/r2, etc., and the Laplacian becomes ∆ = ∂2/∂r2 + ∂2/∂z2; this
simplification is equivalent to identifying the meridional section of the spherical shell
with that of a toroidal shell whose principal radius is set to infinity. On doing this,
the associated inviscid problem is simply(

∂2

∂r2
− α2

ω2

∂2

∂z2

)(
ψ
u

)
= 0,
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where we set λ = iω and α2 = 1−ω2. The solutions of these equations are like those of
the one-dimensional wave equation and we shall use them below in the mathematical
analysis (§ 3). For the time being we concentrate on the formulation of the viscous
problem adapted for numerical resolution.

Equations (2.2) are purely two-dimensional and we use polar coordinates to solve
them; we set

r = ρ cos θ, z = ρ sin θ;

thus
∂

∂z
= sin θ

∂

∂ρ
+

cos θ

ρ

∂

∂θ
, ∆ =

∂2

∂ρ2
+

1

ρ

∂

∂ρ
+

1

ρ2

∂2

∂θ2
.

Expanding u and ψ in Fourier series, namely

ψ =
∑
n

ψn(ρ)einθ, u = −i
∑
n

Vn(ρ)einθ,

we obtain the set of equations

λVn =
ψ′n−1 − ψ′n+1

2
− (n− 1)ψn−1 + (n+ 1)ψn+1

2ρ
+ E∆nVn,

λ∆nψn =
V ′n−1 − V ′n+1

2
− (n− 1)Vn−1 + (n+ 1)Vn+1

2ρ
+ E∆n∆nψn,

 (2.3)

where we set

∆n =
∂2

∂ρ2
+

1

ρ

∂

∂ρ
− n2

ρ2
,

∆n∆n =
∂4

∂ρ4
+

2

ρ

∂3

∂ρ3
− 2n2 + 1

ρ2

∂2

∂ρ2
+

2n2 + 1

ρ3

∂

∂ρ
+
n4 − 4n2

ρ4
.

We note that the velocity components in the plane (formerly ur , uz) are now

uρ =
1

ρ

∂ψ

∂θ
, uθ = −∂ψ

∂ρ
. (2.4)

Boundary conditions on the two circles (ρ = η and ρ = 1) are either no-slip:

ψn =
∂ψn

∂ρ
= Vn = 0, (2.5)

or stress-free:

ψn =
∂Vn

∂ρ
=
∂2ψn

∂ρ2
− 1

ρ

∂ψn

∂ρ
= 0. (2.6)

Equations (2.3) with boundary conditions (2.5) or (2.6) are discretized in the radial
coordinate using Chebyshev polynomials. We finally obtain a generalized eigenvalue
problem which we solve with the same techniques as those used in Rieutord &
Valdettaro (1997).

2.2. Results of numerical solutions

As expected, two-dimensional eigenmodes are very similar to their three-dimensional
counterpart shown in Rieutord & Valdettaro (1997) and I: the mode is concentrated
along the attractor of characteristics existing at the given frequency. The main
difference with three-dimensional modes is the absence of the axial singularity which
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τ = Re (λ) δω = Im (λ)− ω0 τ1 ω1 n
τ1

1.04(n+ 1/2)

ω1

1.04(n+ 1/2)

−1.6436× 10−5 1.6426× 10−5 −0.5197 0.5194 0 −0.9995 0.9989
−4.9352× 10−5 4.9277× 10−5 −1.5606 1.5583 1 −1.0004 0.9989
−8.2333× 10−5 8.2127× 10−5 −2.6036 2.5971 2 −1.0014 0.9989
−1.1538× 10−4 1.1498× 10−4 −3.6486 3.6359 3 −1.0024 0.9989
−1.4849× 10−4 1.4783× 10−4 −4.6957 4.6747 4 −1.0033 0.9989
−1.8167× 10−4 1.8068× 10−4 −5.7448 5.7135 5 −1.0043 0.9989

Table 1. Eigenvalues at η = 0.35 and E = 10−9 near the attractor ω0 =
√

(3 +
√

5− 4η)/8 '
0.7824; τ1 = E−1/2τ and ω1 = E−1/2δω. Stress-free boundary conditions have been used.

τ δω τ1 ω1 n
τ1

3.16(n+ 1/2)

ω1

3.16(n+ 1/2)

−5.0310× 10−5 −4.9456× 10−5 −1.5909 −1.5639 0 −1.0069 −0.9898
−1.5168× 10−4 −1.4828× 10−4 −4.7967 −4.6889 1 −1.0120 −0.9892
−2.5551× 10−4 −2.4682× 10−4 −8.0799 −7.8050 2 −1.0228 −0.9880

Table 2. Same as in table 1 but for modes associated with the attractor at
ω0 =

√
3 + η/2 ' 0.9152.

(a) (b)

τ = –1.64 ×10–5 τ = – 4.94 ×10–5
ω = 0.7824 ω = 0.7825

Figure 1. Plot of the kinetic energy in a meridional section of the spherical shell of the first two
modes associated with the attractor of frequency ω0 = 0.7824; η = 0.35, N = 1100, Nr = 350,
E = 1.0× 10−9; see also table 1.

makes the mode amplitude almost constant along the characteristics of the attractor
(see figure 1). We also observe that there is no residual amplitude outside the attractor,
unlike the three-dimensional case where some ‘noise’ was always present; in some
way, two-dimensional solutions are neater.

However, the most interesting result shown by numerical solutions is the quantiz-
ation of eigenvalues of modes pertaining to a given attractor. This quantization is
clearly shown by tables 1 and 2. This quantization of eigenvalues is associated with
an increasing number of nodes of eigenfunctions when cut along a line perpendicular
to the attractor (figure 2). Figure 3 clearly illustrates this behaviour of eigenmodes,
which is similar to the solutions of a Sturm–Liouville problem.
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L

Figure 2. Attractors for modes of table 1 and figure 1. The straight line L crossing the attractors
is the one for which we have computed the profiles of figures 3 and 4.
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Figure 3. (a) Profile of uφ across the straight line L of figure 2 for mode n = 0 of table 1. We also
plot the analytical solution u given by (3.22). The difference between the numerical solution (uφ)
and the analytical one (u) is hardly perceptible. (b–d ) As (a) but for modes n = 1, n = 2 and n = 3
of table 1.
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τ = – 6.41 × 10–4
ω =  0.5551

Figure 4. Plot of the kinetic energy in a meridional section of the spherical shell of the least-damped
mode associated with the asymptotic attractor of frequency ω0 = 0.55536929; η = 0.35, N = 1100,
Nr = 350, E = 1.0× 10−9.

2.3. Selection of attractors

Not all attractors, however, give birth to the ‘simple’ solutions described above;
indeed, attractors which are symmetric with respect to the origin, i.e. in the transform
θ → θ + π, do not have such solutions. This is a consequence of the form of
equations (2.3) from which it turns out that either ψ or u is antisymmetric with
respect to the origin. An example of this situation is given by the attractor mentioned
in Rieutord et al. (2000): although clearly existing in three dimensions this attractor
seems to be avoided in two dimensions; indeed, figure 4 shows that, although the
amplitude of the mode is dominated by the attractor, the shear layers are much more
spread out than those of the modes in figure 1. Attractors which are not symmetric
within the transform θ → θ + π (like that of figure 1) do not suffer such constraints
since they can be symmetrized (or antisymmetrized) appropriately.

We therefore see that the simple rules shown by table 1 or 2 do not apply
to all attractors. However, this selection effect is specific to the two-dimensional
problem which is obviously not able to mimic the three-dimensional problem in all
cases.
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3. The analytical solution
The foregoing numerical results can be completely explained by making a local

analysis of the shear layers combined with the role of the mapping made by the
attractor.

3.1. Boundary layer analysis for the shear layers

The boundary layer analysis was presented in I and we just need, here, to start from
equation (3.6) of I, letting s→∞; thus we find that

λux − ωuϕ = −∂p
∂x

+ E∇2ux,

λuϕ + ωux − αuy = E∇2uϕ,

λuy + αuϕ = −∂p
∂y

+ E∇2uy,

∂ux

∂x
+
∂uy

∂y
= 0,


(3.1)

where ∇2 = ∂2/∂x2+∂2/∂y2 and α =
√

1− ω2; x and y are respectively the coordinates
along and perpendicular to the characteristic in the meridional plane.

As shown by tables 1 and 2, eigenvalues can be written

λ = iω0 + E1/2(τ1 + iω1) + O(E)

where ω0 is the frequency of the asymptotic attractor, i.e. the attractor for which the
Lyapunov exponent vanishes (see I).

Let us now assume that the shear layers have a typical width E1/4 in the y-
direction. We thus rescale y to ŷ = E−1/4y and we assume in the following that
∂/∂ŷ ∼ 1. Equations (3.1) become

iωux − ωuφ = −∂p
∂x

+ E1/2

(
∂2

∂ŷ2
− τ1

)
ux,

iωuφ + ωux − αuy = E1/2

(
∂2

∂ŷ2
− τ1

)
uφ,

iωuy + αuφ = −E−1/4 ∂p

∂ŷ
+ E1/2

(
∂2

∂ŷ2
− τ1

)
uy, (3.2)

∂ux

∂x
+ E−1/4 ∂uy

∂ŷ
= 0, (3.3)

where we set ω = ω0 + E1/2ω1 and α = α0 − E1/2ω0ω1/α0.
From (3.2) the pressure must scale like E1/4. Therefore we set p = E1/4p̂. From (3.3)

we see that uy is small. We set uy = Eγûy with γ > 1/4. We thus obtain

iωux − ωuφ = −E1/4 ∂p̂

∂x
+ E1/2

(
∂2

∂ŷ2
− τ1

)
ux, (3.4)

iωux − ωuφ = iαEγûy + iE1/2

(
∂2

∂ŷ2
− τ1

)
uφ, (3.5)

αuφ +
∂p̂

∂ŷ
=

[
−iω + E1/2

(
∂2

∂ŷ2
− τ1

)]
Eγûy,

∂ux

∂x
+ Eγ−1/4 ∂ûy

∂ŷ
= 0.
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To leading order we obtain

ux = −iuφ, (3.6)

uφ = − 1

α0

∂p̂

∂ŷ
, (3.7)

∂ux

∂x
+ Eγ−1/4 ∂ûy

∂ŷ
= 0, (3.8)

and to next order (3.5) and (3.4) give

iα0E
γûy + E1/4 ∂p̂

∂x
+ iE1/2

(
∂2

∂ŷ2
− τ1

)
uφ − E1/2

(
∂2

∂ŷ2
− τ1

)
ux = 0. (3.9)

From (3.8) we see that ∂/∂x ∼ Eγ−1/4. Substituting in (3.9) shows that the only
value of γ for which the inertial terms balance the viscous ones is γ = 1/2. We shall
therefore set in the following γ = 1/2 and x̂ = E1/4x. Let us stress that the very weak
variation along the characteristics is necessary for the existence of 1

4
-layers. Unlike

standard boundary layers, 1
4
-layers terms following leading order O(1) terms are of

second order, namely O(E1/2).
For simplicity we shall drop from now on the hats from all the variables. From

(3.6) and (3.7) we obtain ux = iα−1
0 ∂p/∂y. Substituting in (3.8) we obtain

∂

∂y

(
uy +

i

α0

∂p

∂x

)
= 0. (3.10)

We now derive (3.9) with respect to y and we use (3.6), (3.7) and (3.10) to write ux, uy
and uφ in terms of pressure:

∂

∂y

(
∂3p

∂y3
− τ1

∂p

∂y
+ iα0

∂p

∂x

)
= 0. (3.11)

Recalling (3.6) and (3.7) we see that the velocity components ux and uφ obey the same
equation:

∂3u

∂y3
− τ1

∂u

∂y
+ iα0

∂u

∂x
= 0. (3.12)

To summarize, the proper scalings are

ux ∼ uφ ∼ 1, p ∼ ∂

∂x
∼ E1/4, uy ∼ E1/2,

∂

∂y
∼ E−1/4.

Note that if this is introduced from the beginning into the equation for the pressure,
namely into

E2∆3p− 2Eλ∆2p+ λ2∆p+
∂2p

∂z2
= 0, (3.13)

(3.11) is obtained very easily.

3.2. The part played by the mapping

Equation (3.11) must be satisfied by the shear layer solutions of the eigenvalue
problem, yet it is not sufficient to describe completely their structure. What is lacking
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is that we have to take into account the boundary conditions and the fact that the
orbit spanned by the shear layers is closed.

In particular, in order to satisfy the full eigenvalue problem we must impose that
a shear layer with a given profile f(y) = u(x0, y) at a given x0 will be mapped
exactly onto itself after propagating along the characteristics that constitute the
periodic mapping. Thus, one needs to incorporate the global effects of the mapping
coming from the reflection properties of the characteristics with the local character
of a boundary layer analysis. As we shall see, this can be done analytically in the
two-dimensional problem.

First, we observe that in terms of the rescaled variable x, the size of the container
is O(E1/4), thus very small. Hence, if we consider the nth branch, of length `n, of the
shear layer, we can express the variation of the solution along this branch as

un(xn + `n, y) ' un(xn, y) +
∂un(x, y)

∂x

∣∣∣∣
xn

`nE
1/4,

where un is one component of the velocity field and xn the abscissa at the beginning
of the branch. In the following, u will represent either uφ or ux; it satisfies (3.12),
therefore

∂un

∂x
=

i

α0

(
∂3un

∂y3
− τ1

∂un

∂y

)
,

which gives the evolution of the velocity field due to viscosity along the nth branch.
We first consider stress-free boundary conditions. In this case a shear layer reflecting

on a boundary will only be rescaled by a geometrical factor depending on the
inclination of the tangent to the boundary. A solution at the beginning of branch n
(un) is, to order E0, just a rescaled version of the solution of any other branch, namely

un(xn, y) =
1

Kn

u

(
x1,

y

Kn

)
,

where Kn is a product of contraction/dilation coefficients arising from the reflections
on the boundaries (the Cn in Appendix B of I). Thus on branch n we obtain

δun ≡ un(xn + `n, y)− un(xn, y) =
i`nE

1/4

α0Kn

[
1

K3
n

∂3u(x1, y/Kn)

∂(y/Kn)3
− τ1

Kn

∂u(x1, y/Kn)

∂(y/Kn)

]
.

The perturbations δun propagate along the characteristics and are rescaled upon
reflection on the boundaries; when they reach the first branch the velocity variation
is rescaled by the factor Kn, so that

δun =

[
1

K3
n

∂3u(x1, y)

∂y3
− τ1

Kn

∂u(x1, y)

∂y

]
i`n
α0

E1/4. (3.14)

The total perturbation of the initial profile after one complete loop along the
periodic attractor is the sum of the contributions (3.14) of all the branches:

δu =
∑
n

δun =
∂

∂y

[
iA

α0

∂2u

∂y2
− iτ1B

α0

u

]
E1/4, (3.15)

where we have defined A and B as

A =

N∑
n=1

`n

K3
n

, B =

N∑
n=1

`n

Kn

.
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Equation (3.15) gives the variation of the velocity due to viscosity along the path
of characteristics of the periodic orbit; it does not include the variations due to the
mapping, namely the fact that the point (x0, y) will be shifted to a different point
(x0, y

′) after one iteration of the mapping when returning on the same branch after
one loop.

In order to evaluate this variation we shall use the mapping f(φ, λc) expressed in
terms of the latitude φ and the critical latitude λc (which is equivalent to the frequency
of the mode). We use the same definition as in I, namely

f : [0, 4π] −→ [0, 4π],

φ −→ φ′ = f(φ, λc), (3.16)

where φ′ is the latitude of the reflection point of the characteristic after one loop
in the neighbourhood of an attractor†; if φ references a point of the attractor then
φ′ = φ. A simple example of a mapping is given by the equatorial attractor described
in I (§B.1.1); the mapping for which φ3 is a fixed point is

f(φ, λc) = arccos
[
cos(φ− λc) cos 2λc + sin 2λc

√
η2 − cos2(φ− λc)

]
− 5λc.

Now, let us denote as λc0 the critical latitude at which the Lyapunov exponent is zero,
and φ0 the fixed point for the mapping at λc0 (that is f(φ0, λ

c
0) = φ0). The relation

between the coordinate y perpendicular to the characteristic and the latitude φ is,
for φ very near φ0, y = pE−1/4(φ − φ0), with p = r sin(φ0 ± λc0), r(= η or 1) being
the radius of the starting point of the first branch, and ± the sign of the slope of
the characteristic of the shear layer in the first branch. We define the rescaled critical

latitude λ̂ = E−1/2(λc − λc0). We shall assume in the following that y and λ̂ are O(1).

Denoting as f̂(y, λ̂) the mapping expressed in terms of the rescaled variables, we have
the following relations:

f̂(y, λ̂) = pE−1/4(f(φ, λc)− f(φ0, λ
c
0)),

∂i+j f̂

∂yi∂λ̂j
= (pE−1/4)1−iEj/2 ∂i+jf

∂φi∂λcj
.

We shall use the notation

fij ≡ ∂i+jf

∂φi∂λcj

∣∣∣∣
φ0 ,λ

c
0

, f̂ij ≡ ∂i+j f̂

∂yi∂λ̂j

∣∣∣∣∣
0,0

= (pE−1/4)1−iEj/2fij .

The contraction due to the mapping is given by

uN(f̂(y, λ̂)) df̂ = u(y, λ̂) dy; (3.17)

uN is the velocity that would be obtained after one loop (N is the number of branches)
by transporting the initial profile u along the path of characteristics subject to the
inviscid hyperbolic equations. This relation expresses the fact that the flux of the
mapped velocity does not vary.

We develop (3.17) in Taylor series around y = 0, λ̂ = 0 and retain terms up to E1/4.

† Although the definition of f is general, that of a loop makes sense only in the neighbourhood
of an attractor.
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We recall from Appendix B of I that f10 = 1 and f̂(0, 0) = 0. Thus we have

f̂(y, λ̂) = f̂(0, 0) + f̂10y + f̂01λ̂+ 1
2
f̂20y

2 + · · ·

= y + pf01λ̂E
1/4 +

f20

2p
y2E1/4 + · · · ,

∂f̂(y, λ̂)

∂y
= f̂10 + f̂20y + · · · = 1 +

f20

p
yE1/4 + · · · .

Defining

δ ≡ pf01λ̂+ 1
2
f20y

2

we see that (3.17) becomes

u(y) ' uN(y + δE1/4)
∂f̂

∂y

∣∣∣∣∣
y,λ̂

;

therefore, neglecting deviations of order E1/2:

uN(y) ' u(y − δE1/4)

∂f̂/∂y|y−δE1/4 ,λ̂

' u(y − δE1/4)

∂f̂/∂y|y,λ̂

'
(

1− yf20E
1/4

p

)(
u(y)− δdu(y)

dy
E1/4

)

' u− E1/4

(
f20

p
yu+ pf01λ̂

du

dy
+
f20

2p
y2 du

dy

)

= u− E1/4 d

dy

(
f20

2p
y2u+ pf01λ̂u

)
. (3.18)

From (3.15) and (3.18) we obtain the total variation ∆u of the given profile u(y)
after one period along one attractor. We have

E−1/4∆u =
d

dy

(
iA

α0

d2u

dy2
− f20

2p
y2u− pf01λ̂u− iτ1B

α0

u

)
. (3.19)

Let us now note that pf01 = ±B (the demonstration is sketched out in the Appendix)

and that ω1 = α0λ̂; hence the total variation is simply

E−1/4∆u =
d

dy

(
iA

α0

d2u

dy2
− f20

2p
y2u− iλ1B

α0

u

)
, (3.20)

where we set λ1 = τ1 ± iω1.

3.3. Quantization of eigenvalues

The final step is to require that for the solution obtained, there is no variation of the
velocity after one loop along the attractor; hence we impose ∆u = 0:

iA

α0

d2u

dy2
− f20

2p
y2u− iλ1B

α0

u = 0. (3.21)

This equation is easily solved by changing the coordinate: z = e−iπ/8(pA/2α0f20)
−1/4y.
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ω0 A B α0 p f01 f20 2ω1 (n = 0) 2ω1 (num)

0.403 22.5386 5.4017 0.9152 0.9473 5.7021 29.8094 4.7164 4.708
0.623 27.4620 9.2119 0.7824 0.9760 9.4388 5.2267 1.1645 1.164
0.662 54.3756 16.9851 0.7491 0.2622 64.7850 1.6403 0.9399 0.9396
0.782 27.4620 9.2119 0.6228 0.2738 33.6390 1.4665 1.0389 1.039
0.915 22.5386 5.4017 0.4031 0.9473 5.7021 29.8094 3.1302 3.128

Table 3. Comparison between theoretical and analytical eigenvalues along with coefficients of the
mapping. Only absolute values of the parameters are given.

It becomes

d2u

dz2
−
[

1
4
z2 + eiπ/4B

(
p

2α0Af20

)1/2

(τ1 ± iω1)

]
u = 0.

This differential equation is actually the Schrödinger equation of a quantum particle
trapped in a parabolic well, i.e. the famous harmonic oscillator. Its solutions are the
parabolic cylinder functions:

u = U(a, z), a = eiπ/4B

(
p

2α0Af20

)1/2

(τ1 ± iω1).

As −π/4 < arg(z) < π/4, there exist values of a for which U(a, z) vanishes at both
z → −∞ and z → +∞: these are a = −n − 1/2, with n integer; for these values the
solution is simply

u = U(−n− 1/2, z) = e−z
2/2Hn(z), (3.22)

where Hn(z) = (−1)n ez
2

dne−z2

/dzn are the Hermite polynomials.
The condition a = −n− 1/2 yields the quantization rule:

τ1 = ±ω1 = −(n+ 1
2
)

√
α0Af20

pB2
(3.23)

which is verified by numerical solutions as shown by table 3.
These solutions are valid for stress-free boundary conditions; however, they may

easily be generalized to a container with no-slip boundary conditions. Indeed, such
boundary conditions introduce Ekman layers at the reflection point of the shear
layers. Standard boundary layer theory can be applied and leads to eigenvalues of
the form

λ = λSF + (Kτ + iKω)
√
E, (3.24)

where the constants Kτ and Kω weakly depend on the index n of the mode. As an
example, we give in table 4 the eigenvalues associated with the attractor of figure 1
for no-slip boundary conditions.

4. Application to the spherical shell
The two-dimensional solutions which have been obtained can readily be applied to

the three-dimensional problem when the modes remain far from the symmetry axis. In
such a case, two-dimensional solutions behave as approximations of three-dimensional
axisymmetric ones since they only lack curvature terms. Such a situation occurs
naturally with equatorially trapped modes in a thin spherical shell (Stewartson 1971).
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τ δω n Kτ Kω

−5.4270× 10−5 2.2239× 10−5 0 −1.20 0.183
−8.7205× 10−5 5.5068× 10−5 1 −1.20 0.181
−1.2020× 10−4 8.7895× 10−5 2 −1.20 0.179
−1.5327× 10−4 1.2072× 10−4 3 −1.21 0.178
−1.8640× 10−4 1.5355× 10−4 4 −1.21 0.176
−2.1959× 10−4 1.8638× 10−4 5 −1.22 0.174

Table 4. Same as table 1 but with no-slip boundary conditions.
The constants Kτ and Kω are defined in (3.24).

n 3D observations 2D Model

−τ1/K ω1/K −τ1/K

0 0.497 0.484 0.5
1 1.51 1.499 1.5
2 2.53 2.49 2.5
3 3.565 3.50 3.5
4 4.60 4.49 4.5
5 5.67 5.50 5.5
6 6.69 6.53 6.5
7 7.63 7.50 7.5

Table 5. Comparison between the predictions of the two-dimensional model with the numerical
solutions of three-dimensional equations for equatorially trapped modes in a thin shell (η = 0.95).

K =
√
α0Af20/pB2 = 23.8709 is the constant appearing in (3.23) of the two-dimensional model. The

modes are those described in I associated with the equatorial attractor whose asymptotic frequency
is ω0 =

√
1− η/2.

As an illustration of such a situation we computed the modes associated with
the equatorial attractor at ω0 =

√
1− η/2 (cf. I figure 7a) for a thin shell with

η = 0.95. As shown by table 5, the agreement between the predictions of the two-
dimensional model and the values computed from the numerical solutions of the
three-dimensional problem is quite good, especially for the frequency shift ω1. This
example shows that the two-dimensional model can be safely used for geophysical
applications dealing with equatorially trapped modes in the atmosphere or the ocean
for which 1 − η ≈ 10−3. Furthermore, as a test of robustness, we made the same
comparison but for a thick shell with η = 0.35 (like the liquid core of the Earth) still
using the equatorial attractor; quite surprisingly, the predicted eigenvalues are not far
from the observed ones; for instance, the n = 1 mode is predicted with τ1 = −7.07
and observed at τ1 = −6.75, ω1 = 6.66.

These results show an interesting property of the two-dimensional solutions: they
can be used as the zeroth-order solutions in a perturbative approach to the three-
dimensional solutions. One can indeed include perturbatively, as long as the modes
do not touch the axis of symmetry, the curvature terms so as to obtain a better
approximation of the three-dimensional solution.

5. Discussion
We have shown that the eigenvalue problem of inertial modes in a toroidal shell

in the limit of large principal radius, which is the two-dimensional analogy of the
spherical shell problem, is solvable analytically for modes focused along an attractor.
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The physical picture is that an inertial wave is trapped by the attractor and resists
collapse because of diffusion (viscosity). The focused mode is strictly analogous to the
probability wave function of a quantum particle trapped in a potential well V (x) = x2.
This leads to a simple quantization of eigenvalues where the profile of the modes
is given by parabolic cylinder functions. Shear layers are simple E1/4-layers with no
inner E1/3-layer as in steady Stewartson layers.

Contemplating these results one wonders how they may generalize in three dimen-
sions. The case of the inertial modes in a spherical shell bears some resemblance to
the two-dimensional case studied here: the attractors in a meridional plane have the
same shape, the numerical solutions in both cases display E1/4 shear layers focused
along an attractor and the eigenvalues depart from the asymptotic value by a shift
of order E1/2. Hence, the general idea of separating the effects of the local balance
of forces, implied by the equations of motions, and the global effect of the mapping
can also be applied. But these two steps are both more complicated. In I, we noticed
that shear layers may in fact be nested layers combining the E1/3- and E1/4-scales
as Stewartson layers; however, the way the E1/4-scale is determined is still an open
question. Then, the evolution imposed by the mapping along a characteristic path
towards an attractor is governed by Riemann integrals (see I). Finally, the eigenval-
ues which are computed numerically for modes associated with attractors touching
the symmetry axis do not show simple rules of quantization, implying an involved
quantization process.

Nevertheless, the two-dimensional results are of practical interest: they may be
used for a very thin spherical shell as shown in early approaches to this problem (see
Stewartson 1972b); we have shown that in this case, the two-dimensional analytical
predictions are very close to the three-dimensional solutions (obtained numerically);
hence, the two-dimensional solutions are the first step of a perturbative approach
towards the more complex three-dimensional one as long as the axis is not touched.
Moreover, it is clear that our method is easily applicable to other two-dimensional
problems when the geometry is different from that of the spherical shell. The relevant
coefficients (A, B, f20, f01, p) just need to be computed for the new container and the
desired attractor. Thus inertial modes like those studied by Maas (2001), where the
third dimension does not seem to play an important part, can certainly be approached
with our method.

The numerical calculations have been carried out on the NEC SX5 of the ‘Institut
du Développement et des Ressources en Informatique Scientifique’ (IDRIS) which is
gratefully acknowledged.

Appendix. The relation pf01 = ±B
We wish to compute ∂f/∂λ at the fixed point of the asymptotic attractor:

δyn = `nδλ+
∂yn

∂φn−1

δφn−1

= `nδλ+
pn

pn−1

∂φn

∂φn−1

δyn−1

= `nδλ+
pnδφn

pn−1δφn−1

δyn−1

= `nδλ+
δyn−1

Cn
.
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The last equation is a recurrence relation. Setting δy0 = 0, we obtain

δyn =

(
`n +

`n−1

Cn
+

`n−2

CnCn−1

+ · · ·+ `1

CnCn−1 · · ·C2

)
δλ,

from which we deduce that pnf01 = ±B since δyn = pnδφn = pnf01δλ. The ± sign
comes from the choice of the mapping, namely whether we choose f or f−1.
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